A weighted Hardy-type inequality for 0<p<1 with Sharp constant
نویسندگان
چکیده
منابع مشابه
a cauchy-schwarz type inequality for fuzzy integrals
نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.
15 صفحه اولDouble Logarithmic Inequality with a Sharp Constant
We prove a Log Log inequality with a sharp constant. We also show that the constant in the Log estimate is “almost” sharp. These estimates are applied to prove a Moser-Trudinger type inequality for solutions of a 2D wave equation.
متن کاملDouble Logarithmic Inequality with a Sharp Constant
We prove a Log Log inequality with a sharp constant. We also show that the constant in the Log estimate is “almost” sharp. These estimates are applied to prove a Moser-Trudinger type inequality for solutions of a 2D wave equation.
متن کاملA sharp weighted Wirtinger inequality
We obtain a sharp estimate for the best constant C > 0 in the Wirtinger type inequality
متن کاملExtension of Hardy Inequality on Weighted Sequence Spaces
Let and be a sequence with non-negative entries. If , denote by the infimum of those satisfying the following inequality: whenever . The purpose of this paper is to give an upper bound for the norm of operator T on weighted sequence spaces d(w,p) and lp(w) and also e(w,?). We considered this problem for certain matrix operators such as Norlund, Weighted mean, Ceasaro and Copson ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2015
ISSN: 1331-4343
DOI: 10.7153/mia-18-58